激光写光电子学进展

MEMS 光学声传感器

郑永秋¹,陈佳敏^{1,2},赵馨瑜¹,白建东¹,武丽云¹,薛晨阳^{1*} ¹中北大学省部共建动态测试技术国家重点实验室,山西太原 030051; ²中北大学软件学院,山西太原 030051

摘要 结合光纤工作频带宽、传输损耗小以及微机电系统(MEMS)制造工艺可实现微小型化、批量化和高一致性生产的 优势,MEMS光学声传感器表现出高灵敏度、宽频带、大动态范围和高信噪比的优异声探测性能,受到了科研人员的普遍 关注和深入研究。根据声敏感单元结构不同,将MEMS光学声传感器分为微结构光纤光栅型、光纤干涉仪型和微谐振腔 型。然后,分别介绍了不同类型MEMS光学声传感器的声敏感原理,并在此基础上讨论了它们在不同声探测领域中的研 究现状以及目前最为成熟的应用领域。最后展望了MEMS光学声传感器在MEMS工艺逐渐成熟的促使下,可与硅基光 电子集成技术相结合实现系统片上集成的未来发展趋势。

DOI: 10.3788/LOP222693

MEMS Optical Acoustic Sensor

Zheng Yongqiu¹, Chen Jiamin^{1,2}, Zhao Xinyu¹, Bai Jiandong¹, Wu Liyun¹, Xue Chenyang^{1*}

¹State Key Laboratory of Dynamic Measurement Technology, North University of China,

Taiyuan 030051, Shanxi, China;

²School of Software, North University of China, Taiyuan 030051, Shanxi, China

Abstract The operating bandwidth and transmission loss of optical fiber are wide and low. Micro-electro mechanical system (MEMS) manufacturing process can achieve miniaturization, mass production, and high consistency. By combining the above two advantages, MEMS optical acoustic sensors exhibit excellent acoustic detection performance with high sensitivity, wide frequency band, large dynamic range, and high signal-to-noise ratio, which has attracted widespread attention and in-depth research by researchers. According to the different structures of acoustic sensing units, MEMS optical acoustic sensors are divided into micro-structured fiber grating types, fiber interferometer types, and micro-resonator types. The sound detection principle of different MEMS optical acoustic sensors are introduced, respectively. Then their research status in the field of different sound detections and the most mature application fields of them are discussed. Finally, the future development trend of MEMS optical acoustic sensors, which can be combined with silicon-based optoelectronic integration technology to realize system on-chip integration, is prospected.

Key words fiber optics; micro-electro mechanical system manufacturing process; acoustic sensor; micro-structured fiber grating; fiber-optic interferometer; micro resonator

1引言

新一代信息技术产业是国民经济提升的战略性、 基础性和先导性产业,随着其持续迅猛的发展,国防安 全、工业无损检测^[1]、生物医学诊断和光声成像^[2]等声 探测相关领域对准确有效获取声信息提出了更高的要 求。由于传统电声传感器在强辐射等恶劣环境下难以 正常工作,研究者们将声传感器的研究重心转向光学 声传感器。

早在19世纪80年代,贝尔就发明了"光电话"并首次用光实现了声探测^[3]。第一个实用的光学声传感器 是由冯·奥安提出的,采用干涉仪探测薄膜的振动,但

收稿日期: 2022-10-08; 修回日期: 2022-11-10; 录用日期: 2022-11-16; 网络首发日期: 2022-11-26

基金项目:国家自然科学基金(62131018,12104417)、山西省基础研究计划资助项目(202103021222012)、山西省研究生创新项目(2021Y620)

通信作者: *xuechenyang@nuc.edu.cn

它的实现在当时的技术上不可行。随着1966年光纤 之父、华裔物理学家高锟开创性地提出利用光纤实施 高效长程的信号传送^[4]之后,光纤声传感器得到了高 速发展,相比空间光声传感器和电声传感器,其具有 灵敏度高^[5]、频率响应带宽大^[6]、动态范围大^[7]、抗电 磁干扰能力强^[8-9]、可微型化^[10-11]、便于安装、对被检测 场无破坏与干扰等优点。其中,光纤声传感器微型化 的核心是微机电系统(MEMS)技术。MEMS技术是 用于微传感器的批量化、集成化制造技术,具有高集 成度、多功能集成、高附加值等优势。光学MEMS是 MEMS技术与光学技术相互融合产生的技术分支, 可将传统的光学元器件制造技术提升到微型化、阵列 化、批量化的新高度。尤其是智能物联网时代的到 来,MEMS光学声传感器凭借微型化、低功率、高集 成度、低成本的优势成为最具发展前景的声传感 技术。

根据不同的声敏感结构,MEMS光学声传感器可 以分为微结构光纤光栅型、光学干涉仪型和微谐振腔 型三种,主要研究不同结构的MEMS制作工艺参数、

第 60 卷第 3 期/2023 年 2 月/激光与光电子学进展

声敏感材料与光纤的耦合封装等内容。因此,本文将 重点介绍三种不同结构 MEMS 光学声传感器的声敏 感原理和研究现状,该类器件宽频带、高灵敏度、高信 噪比、大动态范围的优异声性能使其在生物医学成像、 地震检测超声成像、工业无损检测、声源定位、结构健 康监测、航空航天超高声压噪声监测、水下目标检测等 民用和军事领域具有巨大应用价值。

2 MEMS光学声传感器基本原理

2.1 微结构光纤光栅的声敏感原理

光纤布拉格光栅(FBG)检测超声波的传感原理 是声致FBG中心波长漂移,主要包括两个方面:一是 超声波声压场使FBG周期A发生变化;二是声致FBG 有效折射率n_{eff}变化,即光弹效应。因此,在超声波作 用下,FBG的中心波长漂移可写为

$$\Delta \lambda_{\rm B} = 2n_{\rm eff} \Delta \Lambda + 2\Lambda \Delta n_{\rm eff} \,. \tag{1}$$

本文通过分别计算有效折射率变化和周期变化得 到FBG的中心波长漂移,从而实现超声探测,图1^[12]为 原理示意图。

2.2 光纤干涉仪的声敏感原理

光纤干涉仪探测声波扰动引起其光路中光程的微小变化,进而实现声探测,主要有四种类型:迈克耳孙干涉仪(MI)型^[13-14]、萨尼亚克干涉仪(SI)型、马赫-曾德尔 干涉仪(MZI)型^[15]和法布里-珀罗干涉仪(FPI)型^[16-18]。

MI型光纤声传感器的传感结构多采用单个耦合 器将入射激光分为两束,两根末端具有反射率的光纤 分别作为参考臂和传感臂,参考臂和传感臂的反射光 发生干涉,通过对干涉光的探测实现传感信息测量,原 理图如图2(a)所示。声波振动会对机械振动结构 (MEMS薄膜)组成的传感臂的传输激光进行调制,从 而产生一定的相位变化。对参考臂和传感臂末端的反 射结构进行优化,可以提升MI型光纤声传感器的灵敏 度和频率响应。

SI型光纤声传感器结构与MI型类似,也采用单 个光纤耦合器构成。不同的是,SI型光纤声传感器中 不存在参考臂,而是通过存在光程差的光纤线圈中传 播方向相反的两束光进行干涉从而实现声探测,原理 图如图2(b)所示,优点是MI型光纤声传感器中低频 信号干扰的问题可以得到改善。

MZI型光纤声传感器系统用到两个光纤耦合器, 耦合器之间的两根光纤,一根作为传感臂,另一根作为 参考臂,两根光纤的输出光叠加后进行干涉,原理图如 图 2(c)所示。可以看出,MZI型光纤声传感器的工作 原理与 MI 型类似,只不过 MZI 型属于透射式光纤声 传感器,而 MI 型则是反射式的。而且,MZI 相比 MI 结构要复杂一些。

与上述三种干涉仪型光纤声传感器不同的是,FPI 型光纤声传感器不需要耦合器和参考臂,具有结构紧 凑和高灵敏度的优点。FPI型光纤声传感器的核心声 敏感单元为由两个反射面构成的法布里-珀罗(F-P)腔, 声场振动引起F-P腔的腔长变化,从而引起干涉光场变 化,通过解调出光场的变化实现声探测,原理图如 图 2(d)所示。

图 2 光纤干涉仪声敏感原理示意图。(a) MI型;(b) SI型;(c) MZI型;(d) FPI型

Fig. 2 Schematic diagram of optical fiber interferometer acoustic sensitivity principle. (a) MI; (b) SI; (c) MZI; (d) FPI

2.3 微谐振腔的声敏感原理

1) 光弹效应

光弹效应是指介质中应力波的存在可改变介质的 介电常数或光折射率,因而影响光在介质中的传播特 性的现象。也就是说,当声压作用于声敏感微腔时,腔 体折射率n会发生相应的变化,即

$$\Delta n \propto \boldsymbol{\xi} \boldsymbol{\cdot} \boldsymbol{P}, \tag{2}$$

式中: *ξ* 是腔体材料的光弹系数,由材料的固有特性 (杨氏模量和泊松比)决定; *P* 是施加在腔体上的声压。 声波引起微腔折射率的变化导致干涉光之间相位差的 变化。最后,输出光功率将相应地改变。因此,可以从 检测到的输出光功率中提取声信号^[19-20]。

2) 全固态波导腔倏逝波声敏感原理

当声音在空气中传播时,空气的密度发生会变化, 其折射率也会发生改变,空气密度与折射率的变化满 足洛伦兹-洛伦茨定律,

$$\frac{n^2-1}{n^2+2} = \rho \cdot \alpha, \qquad (3)$$

式中:n为空气的折射率;a为各向同性分子的平均极 化系数; ρ 为空气的密度, 且 $\rho = \rho_0 + \Delta \rho$, ρ_0 为无声压 作用时,标准状态(湿度为0%, 温度为15 °C, 大气压为 101.325 kPa)下的空气密度。根据式(3)可以得出, 当 空气密度变化为 $\Delta \rho$ 时, 空气折射率变化 Δn 为

$$\Delta n = \left(n_1^2 + 2\right)^2 / 6n_1 \times \alpha \times \Delta \rho_{\circ} \tag{4}$$

利用有效折射率法得到半掩埋光波导谐振腔的本征方程,并经过MATLAB Software对其求解,可以得出有效折射率与上包层折射率的相互对应关系,表示为

$$n_{\rm eff} = k_1 \times n_1^2 + k_2 \times n_1 + k_{3\circ} \tag{5}$$

从而,有效折射率的变化量 $\Delta n_{\rm eff}$ 可以表示为

 $\Delta n_{\rm eff} = (2 \times k_1 \times n_1 + k_1 \times \Delta n + k_2) \cdot \Delta n_{\circ} \qquad (6)$

因为光波导谐振腔的谐振波长与谐振腔的腔长 和光波导的有效折射率有关,当半掩埋光波导谐振 腔的上包层受声压影响密度变化时,会引起折射率 的变化,导致光波导的有效折射率产生变化,从而使 光波导谐振腔的谐振波长发生漂移。因此,可以利 用对光波导谐振腔谐振波长的监测进行声音信号的 检测^[21]。

3) 法布里-珀罗谐振腔声敏感原理

法布里-珀罗谐振腔(FPR)型光纤声传感器的声 敏感单元是一个由平行平面镜组成的刚性FPR,声探 测原理为声波扰动时,FPR不存在腔长的机械位移, 而是通过检测平面镜之间空气折射率的变化来实现声 信号检测。对于理想的FPR,反射或透射光强由艾里 函数决定,

$$T = \frac{1}{1 + F \cdot \sin^2\left(\frac{q}{2}\right)},\tag{7}$$

式中: $F = \frac{4R}{(1-R)^2}$, R是镜面反射率; $q = \frac{4\pi nd}{\lambda}$ 是腔

内的往返相移,n是腔内空气折射率,d是镜面间距,λ 是激光波长。

根据Rüeger教授的总结和研究可知,在动态声传播过程中,声信号引起的空气折射率改变为

$$\Delta n_{\rm ph} = \left(\frac{273.15}{101325} \times \frac{\Delta p}{T} \times N_{\rm sph}\right) \times 10^{-6}, \qquad (8)$$

式中: N_{sph} 是在指定标准大气环境,大气压强p=1013.25 hPa,CO₂体积分数x=0.0375%,水汽压e=0.0 hPa时的空气折射度。公式表示为

$$N_{\rm sph} = (n_{\rm sph} - 1) \times 10^{6} = 287.\ 6155 + \frac{1.\ 62887}{\lambda^{2}} + \frac{0.\ 01360}{\lambda^{4}} \circ$$
(9)

由于声压改变了腔内介质的折射率n,腔镜之间的光程长度n•d也会改变,因此通过探测腔共振的位移和透射或反射光强度的变化可以实现声探测^[22]。

第 60 卷第 3 期/2023 年 2 月/激光与光电子学进展

3 MEMS光学声传感器研究现状

3.1 基于微结构光纤光栅的MEMS光学声传感器

随着光纤通信网络的迅速发展,传统光纤的局限 性成为其超大容量、超高速发展的瓶颈。微结构光纤 在20世纪90年代的光纤技术革命中应运而生,它是一 种新型光纤,其纤芯或包层不再是传统光纤那样的单 一结构,而是在其中引入了一些微小结构,如包层中周 期性结构、纤芯中缺陷结构等,这些微小结构极大地增 加了光纤的设计自由度,通过调整结构,可以得到传统 光纤不具备的优良特性。微结构光纤已被广泛应用于 光纤通信、光纤传感、非线性光纤光学及新型光纤功能 器件等领域^[23]。

2017年,华中科技大学的鲁平课题组提出一种基于超长周期薄芯光纤光栅(TC-ULPFG)的新型曲率和声波传感器[图3(a)]^[24]。实验结果表明,其可以达到97.77 dB/m⁻¹的高曲率灵敏度。利用其曲率特性进行声学测量,得到传感器的声压灵敏度为1.89 V/Pa,在200 Hz处噪声限制的最小检测压力为1.94 mPa/Hz^{1/2},频率波动在70~200 Hz接近±0.4 dB,在1~3 kHz约为±0.2 dB。因此,所提出的光纤声传感器具有曲率灵敏度高、声压灵敏度高、制作方便、结构简单、成本低等优点。

图 3 实验结果。(a)TC-ULPFG结构图^[24];(b)钢的方形平面和Co²⁺掺杂光纤光栅;(c)交叉Co²⁺掺杂微光栅的扫描电子 显微镜图像^[8]

Fig. 3 Experimental results. (a) Structure diagram of TC-ULPFG^[24]; (b) steel square plane and Co²⁺-doped FBGs; (c) scanning electron microscopy image of the crossed Co²⁺-doped micro-FBG^[8]

2018年,北京理工大学的Gao等^[8]提出一个基于 交叉超细纤维布拉格光栅的全纤维矢量声传感器 [图 3(a)]。氢氟酸溶液中,在掺杂 Co²⁺的光纤中镶 嵌了两个彼此平行的微型光纤光栅形成光纤光栅对。 由于Co²⁺掺杂微光纤在外加声信号作用下的温度分 布不对称,因此可以通过声粒子速度实现声源定位。 实验结果表明,该传感器可以实现尺寸小于1.5 mm 的二维声源定位,定向灵敏度可达1.57 mV/(°)。 2019年Gao等^[25]对上述结构进行了改进,将单模光纤 中的两个超细光纤布拉格光栅放置在掺杂Co²⁺的超 细光纤两侧,形成三个平行的超细光纤阵列。实验 结果表明,在1000 Hz频率下, 声粒速度灵敏度为 44.2 V/(m/s),方向灵敏度为0.83 mV/(°),通过两个 交叉声源的正交方向响应实现了声源定位。从而证明 了并联微光纤阵列具有方向识别能力,为微小尺寸的 定向声信号检测提供了途径。

2022年,西北大学的Yin等^[26]研制出一种微型聚 合物布拉格光栅(PBG)传感器,同样将其用于地震物 理模型的超声成像。传感布拉格光栅利用飞秒激光刻 录在紫外(UV)胶聚合物波导上。因为PBG的杨氏模 量较低,所以其与相同反射率的单模光纤布拉格光栅 和移相光纤布拉格光栅相比,对超声波有更高的响应 幅值。此外,该传感器在大尺度三维地震物理建模中 可以清晰地重建断层、起伏和沉积终止等构造特征。 所提出的PBG传感器为地震物理模型的高保真超声 成像提供了一种制作简单、灵敏度高、稳定性好的新 技术。

微结构光纤光栅型 MEMS 光学声传感器的突出 优势是灵敏度高,能实现高保真度的超声成像,多用于 地震物理模型的超声成像领域。另外,多根光纤并联 的微阵列具有方向识别能力,可用于声源定位领域。

3.2 基于光纤干涉仪的 MEMS 光学声传感器

3.2.1 MI型MEMS光学声传感器

2011年,国防科技大学的Zhang等^[27]将MI系统中的双反射镜替换为只反射双侧光的FBG,在简化了MI型光纤声传感器结构的基础上实现了在100 Hz~

2 kHz内波动低于 0.3 dB 的频率响应和 0.99994 的线 性响应。香港理工大学的靳伟团队一直致力于微结构 光纤的研究,2013年,他们将空心光子带隙光纤(HC-PBF)用于声传感,通过利用包裹7µm厚的硅胶外包 层和 100 µm 厚的 Parylene C 护套的 HC-PBF 形成 一个MI干涉仪进行实验表征,其压敏性比商用HC-1550-02 光纤高 10 dB,比标准单模光纤高 25 dB^[28]。 这是因为空心光子带隙光纤中沿纤维存在许多空气 柱,显著降低了有效杨氏模量,增大了声压引起的轴向 应变,所以HC-PBF中基模对声压的相位灵敏度被显 著提高。华中科技大学的鲁平课题组先后在2016年 和 2020 年分别将聚合物 (PP/PET) 膜和金膜作为 MI 系统中的反射镜,目的是提高光纤声传感器的灵敏 度^[29]。在基于 PP/PET 膜的 MI型光纤声传感器的光 路中,声信号引起的膜片变形将被放大两倍,因此该传 感器在 90~4000 Hz 的频率范围内灵敏度超过 -128 dB re 1 rad/Pa,在 600 Hz 处信噪比(SNR)达到 42 dB。基于大面积金膜片的 MI型光纤声传感器的相 位灵敏度约为-130.6 dB re 1 rad/@100 Hz。在 0.8~ 250 Hz的响应范围内,灵敏度波动小于0.7 dB^[30]。在 5Hz时,该传感器的信噪比为57.9dB,最小检测压力 (MDP)为10.2 mPa/Hz^{1/2}。

3.2.2 SI型 MEMS 光学声传感器

2015年,香港理工大学的 Ma等^[31]通过在 SI 系统 中引入膜片式声敏感探头提出了一种新型的 SI 型光 纤声传感器,并在空气中实现了 1~20 kHz 的频率响 应范围。2016年鲁平课题组结合了光纤拼接和引入 膜片两种方法,将长周期光纤光栅插入基于 SI 的保偏 光子晶体光纤(PM-PCF)中,又引入 PET 薄膜来敏感 声音,所提出的声传感器系统实现了 331.9 μPa/Hz^{1/2} 的最小可探测声压和40 mV/kPa的灵敏度^[32]。

3.2.3 MZI型 MEMS 光学声传感器

2016年,Pawar等^[33]在MZI中使用了保偏光子晶体光纤,其由两个单模光纤拼接而成,工作波长为1550 nm。所得到的MZI型光纤水听器可以实现5~200 Hz的低频声探测。2021年Dass等^[34]提出了一种新型的光纤水听器系统。它由在传统的单模光纤(SMF)中创建两个锥形的直列MZI(IMZI)结构组成。SMF的锥形被一小段长度的未锥形SMF分开。为了获得更好的灵敏度,IMZI附着在天然橡胶(NR)的圆形膜片上。该水听器在水下的测试结果为:频率响应范围为15~350 Hz,灵敏度为27.93 nm/Pa,最小可检测压力为5.53 mPa/Hz^{1/2},说明其可用于低频声学应用,如海底地震测量。

3.2.4 FPI型MEMS光学声传感器

3.2.4.1 本征型 FPI 光纤声传感器

FPI型 MEMS 光纤声传感器分为本征型和非本 征型光纤声传感器。本征型是指光纤既是光传输元件 也是声敏感元件,由于不需要复杂的外部敏感元件,该 类传感器具有结构简单的优势。

1990年,Alcoz等^[35]提出一种由连续长度的单模 光纤组成、内置FPI的本征型光纤超声传感器,并实现 了100kHz~5MHz的超声波探测,可用于现代复合材 料的无损检测。

2014年暨南大学 Wang 等^[36]介绍了一种基于超细 光纤法布里-珀罗干涉仪的声传感器。该传感器采用 193 nm 准分子激光侧光照射,在超细光纤中由两个波 长匹配的布拉格光栅形成F-P腔。当传感器置于水中 时,应用声波信号周期性地改变周围液体的折射率 (RI),并基于液体和透射光之间的倏逝场相互作用调 节FPI的传输。由于较强的倏逝场相互作用,该传感 器的灵敏度比传统单模光纤制造的传感器高10倍,此 外,该传感器的直径仅为5.2 um,可显著提高光声成 像应用的空间分辨率。2019年 Wang 等^[37]研究了同样 结构的超细光纤FPI光声传感器对超声、温度、外折射 率和成像的灵敏度特性。该传感器在35 MHz带宽上 实现了18 Pa的噪声等效功率(NEP)。由于高阶模式 光纤的倏逝场分布更大,高阶干涉峰波长随温度或折 射率变化漂移更多,所以FPI高阶模的温度灵敏度和 折射率灵敏度均高于基模。另外,超细光纤法布里-珀 罗干涉传感器实现了98 pixel的环状毛发光声体积成 像。更小直径的超细光纤可以改善传感器的频率响 应,进而在光声成像时能呈现出更好的可视性。

2018年西北大学荣强周课题组提出了一种基于 葡萄柚光子晶体光纤的微全光纤悬芯传感器,如 图 4^[36,38]所示,微米级悬浮核形成本征 FPI对大范围的 超声波频率高度敏感。该传感器通过将悬芯直径刻蚀 到几微米,显著提高了空间分辨率和检测灵敏度。此 外,紧凑的全光纤传感结构便于传感器重复和批量生 产。2022年同课题组的 Shao 等^[39]提出了一种基于 FBG-FPI的微悬芯光纤传感器,用于地震物理建模中 的超声检测。通过对微结构光纤进行酸腐蚀,将两个 级联的均匀 FBG 印迹在悬芯光纤中。与之前的悬芯 FPI传感器相比,由于使用了双 FBG 反射镜而不是弱 反射光纤反射镜,传感器的响应和稳定性得到了很大 的提高,并将该传感器用于地震物理建模,证明了其实 用性。

2019年,渥太华大学的Fan等^[40]提出了一种基于 超紧凑光纤的多模双腔FPI超声波传感器,利用压电 陶瓷的高次谐波作为超声源,实现了5kHz~ 45.4 MHz的宽带频响。这种简单、经济的超声设备为 无损检测和先进的生物医学应用提供了新的机会。 3.2.4.2 非本征型FPI光纤声传感器

非本征型FPI光纤声传感器指光纤只起到导光的 作用,声敏感元件为薄膜^[41]或其他可以敏感声压变化 的探测器件^[42]。目前,科研人员研究最多的典型FPI 光纤声传感器核心声敏感结构为采用光纤末端端面和 薄膜构成的FPI,容易实现大带宽和高灵敏度。其中,

图 4 微全光纤悬芯传感器。(a)超细光纤布拉格光栅 FPI型声传感器原理图^[36];(b)悬芯传感器原理图;(c)悬芯传感器实物图^[38] Fig. 4 Micro all fiber suspension core sensor. (a) Schematic diagram of FPI acoustic sensor with microfiber Bragg grating^[36]; (b) schematic diagram of suspension core sensor; (c) image of suspension core sensor^[38]

声敏感膜片包括聚合物膜片、光子晶体膜片^[43]、石墨烯 薄膜、金属膜^[44-46]和硅膜等。

(c)

1) 聚合物膜片

1996年,Beard等^[47]基于由透明聚合物薄膜和多 模光纤末端组成的低精细F-P腔,实现了一种非本征 光纤超声传感器。该传感器实现了高达25 MHz的频 响带宽和61 mV/MPa的探测灵敏度,性能可与聚偏 二氟乙烯(PVDF)膜式水听器媲美,其超声探测示意 图如图5所示。2000年,他们又通过直接在单模光纤 末端沉积聚合物薄膜作为低精细法布里-珀罗干涉仪 实现了一种小孔径宽带超声光纤水听器^[48],其声学性 能优于 PVDF 针式和膜式水听器,在 25 MHz 测量带 宽内,峰值等效噪声压力为 10 kPa,宽带响应为 20 MHz,动态范围为 60 dB,线性检测上限为 11 MPa。 2009年, Morris等^[49]又研制了一种可同时测量声压和 温度的双传感光纤水听器,用于表征超声场和超声致 热。其传感机制是:基于对沉积在单模光纤顶端聚合 物膜法布里-珀罗干涉仪中声和热诱导厚度变化的检 测。该传感器在 20 MHz 的测量带宽下实现了 15 kPa 的峰值等效噪声压力,频响带宽为 50 MHz。除了声压

图 5 光纤超声传感器超声探测示意图[47]

Fig. 5 Schematic diagram of optical fiber ultrasonic sensors for ultrasonic detection^[47]

特邀综述

的测量,该传感器还表现出良好的热性能,可以测试到 70℃的温度,分辨率为0.34℃。

2) 光子晶体薄膜

2007年斯坦福大学的 Kilic 等^[50]提出一种基于法 布里-珀罗干涉仪的声传感器,该干涉仪由单模光纤和 外部硅光子晶体反射镜形成。该传感器在空气中实现 了 50 kHz 的 频 率 响 应, 最小可探测声压低至 18 μPa/Hz^{1/2},比相似类型的光纤声传感器低四个数量 级。2013年斯坦福大学的 Jo 等[51]讨论了利用在光纤 尖端制作光子晶体薄膜所得到的微型FPI进行光纤声 学传感的最新进展。该传感器的频率响应在600 Hz~ 20 kHz之间是平坦的,归一化灵敏度高达0.17 Pa⁻¹, 频率响应在1~30 kHz之间,其平均最小可探测声压 为2.6 µPa/Hz^{1/2}。这类稳定和紧凑型光学传感器具有 在可听范围内进行高灵敏度检测的潜力。2021年 Lorenzo等^[52]基于光子晶体薄膜FPI水听器,描述了一 种能够测量心肌细胞声信号的小型水听器的设计、特 性和测试。该水听器可以在小于5 mm 深的小液体体 积中工作,并在浸泡过程中引入一个微通道来排气,从 而使其带宽和灵敏度得到优化。组装好的小型水听器 截面图和实物图如图6所示。在水中的建模和实验结 果显示,带宽从50 Hz到18 kHz,最小可检测压力为 $3 \mu Pa/Hz^{1/2}$

图 6 基于光子晶体薄膜的小型水听器截面图和实物图^[52] Fig. 6 Sectional and physical drawings of a small hydrophone based on photonic crystal film^[52]

3) 石墨烯薄膜

2013年香港理工大学的 Ma 等^[53]报道了一种基于 约 100 nm 厚的多层石墨烯膜片的光纤法布里-珀罗声 传感器,原理图和实物图如图 7 所示。在空气中表现 出从 0. 2~22 kHz 的平坦频率响应,60 μPa/Hz^{1/2}的噪 声等效声压级和 1100 nm/kPa 的声压灵敏度的声性能, 可用于高灵敏度的声探测。2015年香港理工大学的 Li 等^[54]通过采用更薄的多层石墨烯膜片,将该光纤法布

图 7 基于约 100 nm 厚的多层石墨烯膜片的光纤法布里-珀罗 声传感器的原理图和实物图^[53]

Fig. 7 Schematic and physical drawings of a fiber-optic Fabry-Perot acoustic sensor based on a multilayer graphene film approximately 100 nm thick^[53]

里-珀罗声传感器的声压灵敏度提高为2380 nm/kPa, 证明了使用纳米厚石墨烯膜片设计超高灵敏度声传感器的有效性。2018年Ni等^[55]提出了一种基于10 nm 厚度石墨烯膜片的超宽带光纤声传感器。经实验验证,该声传感器频率响应范围为5 Hz~0.8 MHz,覆盖 了从次声到超声的范围,同时实现了噪声限制最小可 探测声压为0.77 μPa/Hz^{1/2}@5 Hz 和33.97 μPa/Hz^{1/2}@ 10 kHz。由于所制备的非本征光纤法布里-珀罗 (EFPI)传感器具有封闭的空腔,因而可以在空气和水 下进行测量。

虽然石墨烯具有超薄厚度、超低质量和高机械弹 性等优异性能,但它在空气中易碎,在传递过程中容易 破裂。氧化石墨烯(GO)是石墨烯的衍生物,具有与石 墨烯相似的结构,因此具有与石墨烯相似的光学性质。 此外,氧化石墨烯膜具有制备路线可靠、厚度可控等优 点。因此,氧化石墨烯薄膜也可以作为声敏感膜片[56]。 2020年重庆大学 Wang 等^[57]介绍了一种由单模光纤和 氧化石墨烯薄膜组成的FPI光纤声传感器。该传感器 在200 Hz~20 kHz范围内保持线性声压响应和平坦频 率响应,同时是一种全向传感器,在10天的测试期内 具有很高的工作稳定性。2021年南京邮电大学的万 洪丹团队提出了一种基于氧化石墨烯法布里-珀罗微 腔(GOFPM)的多频光纤声传感器^[58]。单频声信号检 测时,信噪比可达65.2 dB,频率响应范围较宽,为 400 Hz~20 kHz,线性度约为1。双频和三频声信号检 测的信噪比分别为65.1 dB和61.8 dB。所提出的多 频光纤声传感器在结构健康监测、光纤水听器、管道泄 漏检测、生物医学等领域具有潜在的应用前景。

特邀综述

4) 金属膜

2012年内布拉斯加大学林肯分校的 Guo 等^[50]提 出并演示了一种基于超薄银膜片的光纤尖端传感器, 用于高灵敏度和高频超声检测。光纤尖端传感器在内 径为 75 μm 的微管上有 300 nm 厚的银膜片,实现了 1.6 nm/kPa 的灵敏度和 1.44 MHz 的谐振频率,频率 响应的 3 dB 带宽为 0.10 MHz。

2016年哈尔滨工业大学的Liu等^[60]采用磁控溅射 的方法制备银薄膜,能更好地控制膜厚,并利用基于正 性光刻胶的牺牲层工艺很好地保持了膜片的平整度, 实物图如图8(a)所示。该基于大面积银膜的光纤法 布里-珀罗干涉声学传感器的声灵敏度为-124.8 dB re 1 V/μPa,线性压力响应范围为2.5~268 mPa,在 0.2~2.8 kHz范围内表现出平坦的频率响应,噪声等 效声信号电平为83 μPa/Hz^{1/2}@1 kHz。上述声性能表 明其有望用于微弱声传感。2018年他们课题组又提 出一种基于波纹银膜片的非本征法布里-珀罗干涉光 纤传声器,图8(b)^[61]是光纤传声器的实物图。这种波 纹银膜片虽然可以提高传感器的灵敏度,但是相对于 同参数的平面银薄膜,频率响应平坦范围变小。

图 8 基于金属膜的声学传感器。(a)基于大面积银膜的光纤法 布里-珀罗干涉声学传感器的实物图^[60];(b)基于波纹银 膜片的光纤传声器的实物图^[61]

Fig. 8 Acoustic sensor based on metal film. (a) Image of fiber-optic Fabry-Perot interference acoustic sensor based on large area silver film^[60]; (b) image of fiber-optic microphone based on corrugated silver diaphragm^[61]

2020年天津大学的Qi等^[62]研制了飞轮状不锈钢 膜片FPI光纤声传感器。该膜片突破了边缘夹紧圆结 构增加厚度和减小半径所带来的灵敏度限制。该传感 器在4.5kHz频率下的声压灵敏度为1.525 nm/Pa。所 获得的噪声限制最小可探测声压为13.06 μPa/Hz^{1/2}@ 4.5kHz,声压信噪比为70.42 dB@4.5kHz。在整个 频率范围内,可以获得腔长变化的平均信噪比为 62.43 dB。由于成本效益和小巧的尺寸,所提出的声 学传感器具有较大的竞争优势,这对商业应用至关 重要。

2021年厦门大学 Xiang 等^[63]提出了一种基于金膜 片的高灵敏度光纤法布里-珀罗干涉仪传感器,其由 140 nm 厚的金膜片和光纤准直器端面组成,两者都封 装在一个由玻璃管制成的结构中。实验结果表明,该传 感器具有 400 Hz~12 kHz 的平坦响应范围,压力灵敏度 和最小可探测声压级分别为 175.7 dB re 1 rad/ μ Pa@ 150 Hz 和 95.3 μ Pa/Hz^{1/2}@2 kHz。该传感器具有灵敏 度高、频率响应宽、成本低、制作简单等优点,在实际应 用中具有作为高灵敏度、高音质光纤传声器的潜力。

5) 硅膜

2019年天津大学的Liu等^[64]研究了一种用于同时 测量声温的光纤法布里-珀罗传感器。该传感器由硅-玻璃-硅夹层结构通过阳极键合而成。带有圆形孔槽 的空气 F-P 腔利用硅膜的变形实现声学测量,利用硅 折射率的温度敏感性实现温度测量。实验结果表明, 该传感器的信噪比为53 dB,在21 kHz时的声灵敏度 为4.65 mV/Pa,在20~120 ℃时的温度灵敏度为 123.10 nm/℃,在航空声学和温度同步测量中具有很 大的潜力。

2021年中国科学院 Ren 等^[65]设计制备了硅基桥 连耦合双翼形 MEMS 仿蝇耳振膜,利用该振膜制作了 光纤 FPI麦克风(图9)。该麦克风包含一个封闭的后 腔,通过光纤法布里-珀罗干涉仪测量膜片远端边缘的 振动来工作,可作为定向麦克风用于声源定位。实验 测得其方向灵敏度为1.86 mV/(°),最小可探测声压 为1.5 mPa/Hz^{1/2}。2022年该课题组通过制备不同尺

- 图 9 光纤 FPI麦克风。(a)组装仿生定向麦克风的组件;(b)麦 克风头截面图;(c)制备好的仿生定向麦克风的照片^[65]
- Fig. 9 Fiber FPI microphone. (a) Components used for assembling the bionic directional microphone; (b) crosssection view of the microphone head; (c) photograph of the as-prepared bionic directional microphone^[65]

寸的仿生振膜对光纤FPI麦克风的声响应性能进行改善,得到方向灵敏度为39.98 mV/(°),最小可探测声 压为0.49 mPa/Hz^{1/2}。FPI作为声光换能器,使定向麦 克风具有高灵敏度和抗电磁干扰能力,适用于恶劣环 境下的低频声源定位,尤其适用于环境噪声源的追踪。

此外,基于二氧化硅膜片^[66-67]、二硫化钼膜片^[68]等 非本征 FPI光纤声传感器也被陆续研制出来,并可用 于定向声学测量、极低频声传感等声探测领域。然而, 膜片作为声敏感材料,要想实现高灵敏度,则需要膜片 的厚度非常薄,但膜片过薄的话容易破损导致声探测 动态范围较小。同时,频率响应特性也受膜片的尺寸、 类型、厚度等的限制。总之,基于膜片的FPI光纤声传 感器存在灵敏度、频率响应和动态范围之间的权衡,所 能实现的声传感性能有限。

3.3 基于微谐振腔的 MEMS 光学声传感器

1)微环谐振腔型

2006年密歇根大学的O'Donnell等^[89]利用聚合物 微环谐振器进行高频超声探测。光学微环谐振器由环 形波导与直母线波导紧密耦合构成,声敏感原理为:由 于光弹效应,声波作用于环形波导上会使波导尺寸和 折射率改变,从而改变了波导内部的有效折射率。而 且,微环共振的强烈波长依赖性可以增强光学对声应 变的响应。实验证明该声传感器实现了 50 MHz 的宽 带超声脉冲探测。2008年他们团队利用纳米印迹技 术制作了品质因数为 6000 的聚合物微环谐振器,实现

第 60 卷第 3 期/2023 年 2 月/激光与光电子学进展

了高灵敏的低噪声宽带超声检测,测得的噪声等效压 力为 0.23 kPa,响应带宽为 90 MHz 以上^[19]。另外,用 其进行光声成像测试,显著的高灵敏度特性使其成像 深度比最先进的聚偏二氟乙烯探测器增加了 3 倍。 2014年同团队的 Zhang 等^[70]报道了一种具有宽频带和 高灵敏度的基于印迹聚合物光学微环的超声波探测 器。该器件的声响应在-3 dB下可达 350 MHz,在该 频率范围内噪声限制检测压力低至 105 Pa,实现了 3 μm 以下的轴向分辨率光声成像,比已有记录提高了 2 倍以上。实验结果表明,基于聚合物的微型微环谐 振器不仅可作为高性能超声探测器,还具有获取三维 细胞和亚细胞分辨率的体光声图像的潜力。

2019年西北大学 Chen等^[71]提出一种紧凑的光纤 水听器,该传感器探头包括一个微谐振器,其通过将一 个锥形光纤捆绑到一个环结构中形成,品质因数高达 10⁴。同时,光纤水听器实现了宽方向范围的水下高频 (约为 MHz)声测量。2021年中北大学陈晨^[21]设计并 制备了半掩埋光波导谐振腔,基于谐振腔倏逝场激发 的光声耦合传感理论进行了声传感效应验证(图 10)。 在空气声环境中,该器件实现了 20 Hz~1.4 MHz 的平 坦频率响应,最小可探测声压为 2.21 mPa/Hz^{1/2}。通 过倏逝场激发的声敏感原理实现了全固态集成波导腔 声传感器件,提高器件集成度的同时解决了基于运动 部件的传统声传感器件中存在声探测频带窄、可探测 声压低的瓶颈问题。

图 10 耦合好的单通道与双通道半掩埋光波谐振导腔实物图^[21] Fig. 10 Physical diagram of coupled single-channel and double-channel semi-buried optical waveguide cavities^[21]

2) 微球谐振腔型

2014年 Chistiakova 等^[72]提出一种可用于超声检 测的基于光弹效应的超高品质因数二氧化硅微球腔声 传感器。与之前基于微环腔的超声传感器相比,其声 敏感结构几何形状和材料的变化,以及品质因数的三 个数量级的增加,使得声传感器的灵敏度显著提升,同 时噪声等效压力和器件响应也得到改善。该器件主要 应用于医疗诊断中的超声成像领域。2019年东北大 学张亚男等制作了一种光纤耦合的回音壁模式微球谐 振腔,谐振腔的耦合参数和谐振特性随周围体折射率、 温度和声强的变化而改变,可以测量得到相应的灵敏 度为 20.49 nm/RIU、7.38 pm/℃、-1.9 pm/dB。该 传感器具有体积小、品质因数高、温度灵敏度低和成本 低等优点,可用于噪声监测。2019年西安交通大学 Han等^[73]提出一种基于球形微腔光纤斐索干涉仪的新 型光声传感器。其制作方法是将一段单模光纤插入球 形微腔中,形成斐索干涉仪。同样由于光弹效应,声压 改变微腔的折射率,从而改变干涉光谱,声敏感原理图 如图 11 所示。该传感器在 20 Hz~20 kHz 的可听范围 内具有线性声压响应和平坦的频率响应,平均灵敏度 约为3 mV/mPa,平均噪声限制最小可探测压力 (MDP)低至 10 μPa/Hz^{1/2},同时还具有良好的全向性。 然而这些传感元件是由可固化聚合物制成,其结构很 容易被划伤,此外,由于聚合物材料的柔软特性,声传 感器的几何形状可能在高环境压力下发生变形。 2022年,北京大学 Sun等^[74]利用两种不同腔体材料封 装的微球谐振器开发了超声传声器。噪声等效压力在 20 MHz 时低至 160 Pa,声学响应在-6 dB 时高达

图 11 基于聚合物球形微腔光纤斐索干涉仪的新型光声传感器原理图^[73]

Fig. 11 Schematic of novel photo-acoustic sensor based on a polymer spherical microcavity fiber-optic Fizeau interferometer^[73]

70 MHz。此外,他们还将微传感器用于光声显微镜, 成功对毛发和叶脉进行了三维成像,表明了其具有作 为探针式超声探测器的巨大潜力。

3) 法布里-珀罗微谐振腔型

2017年Guggenheim等^[6]介绍了一种基于新型平 凹聚合物微谐振腔的通用光学超声传感概念。该传感 器结构为由两个高反射镜之间形成的固体平凹聚合物 微腔,工作原理是:通过入射声波产生的应力改变腔体 光学厚度(即腔体聚合物折射率)从而改变反射光功率 来实现声探测,其原理图及光纤微谐振腔传感器结构 如图12所示。平凹微谐振器的设计所提供的强光学 约束使该器件可产生非常高的灵敏度,同时具有优良 的宽带声频响应和广泛的指向性,而且在带宽和灵敏 度方面是高度可扩展的。为此,表征了一系列微谐振 腔光纤超声传感器的声学性能,宽带声学响应高达 40 MHz、噪声等效压力低至1.6 mPa/Hz^{1/2}。另外,它 们还实现了在高分辨率光声和超声成像中的实际应 用。2022年Han等^[75]通过在光纤的末端沉积一小体 积的熔融玻璃制成了一个固体的平凹微腔,由于光纤/ 玻璃界面和玻璃/空气界面两个表面可以部分反射光, 因此在光纤的平面端面和玻璃层的凹面之间也可以实 现一个干涉式微腔。其明显优势是由于玻璃材料的网 格性质,得到的声传感器件克服了由于聚合物材料的 柔软性使其几何形状可能在高声压环境下发生变形的 缺点,具有非常好的稳定性。声测试结果为该光纤声 传感器在可听频域内具有线性的声压响应,最小可探 测声压为12 μPa/Hz^{1/2},性能可与最先进的商用麦克风 相媲美。

Fig. 12 Optical fiber acoustic sensor based on planar concave polymer micro-resonant cavity. (a) Schematic diagram; (b) optical fiber micro-resonator sensor structure^[6]

2011年,Fischer等^[76]提出了基于全固态FPR的无 膜光学麦克风,FPR声敏感结构由两个部分透射的平 面镜组成,图13是其实验原理和性能指标,实现的声 压灵敏度达80 mV/Pa。声信号探测的灵敏度由反射 镜的反射率决定,反射率越高所能实现的灵敏度越大。 在室温和标准大气压下,声压致空气折射率的变化为 2.84×10⁻⁹ Pa⁻¹,理论上,基于FPR的直接耦合型光 纤声传感器可以检测到的最小折射率变化为10⁻¹⁴。 2016年,奥地利XARION激光声学公司研发了高性能 的微小型FPR光纤声传感器^[77]。该产品在空气中实现了10 Hz~1 MHz的频率响应,动态范围为100 dB。 通过将FPR空腔中的介质变为水或其他液体(由于这 些介质中声阻抗更容易匹配),可以很好地提高器件的 频率响应,比如FPR型光纤水听器实现了10 Hz~ 2 MHz的频率响应平坦范围,动态范围为34 dB~ 174 dB。该器件的探测上限取决于入射激光束直径, 探测下限受限于系统噪声和环境振动的干扰,可通过 引入参考FPR环路与敏感FPR响应信号构成差分来

提高信噪比。然而,该微小型FPR的镜面反射率只有50%,限制了其产品的灵敏度只有10mV/Pa。更好的声传感性能需要通过提高FPR的镜面反射率实现,但对FPR的制造工艺和声信号解调技术提出了更高的要求。

中北大学从2016年开始进行基于高Q值F-P共 振敏感机制的全固态超宽频带高灵敏声传感器件的相 关研究,主要围绕F-P共振腔声压敏感机理、全固态F-P共振腔结构力学参数特性、基于高频载波调相谱的 高 Q值 F-P 共振腔稳频环路模型等基础科学问题展 开。研究初期,Wu等^[78]选择全刚性超稳定共焦 FPR 进行声压敏感机理验证(图 14),共焦 FPR 的腔镜为具 有 高 反 射 率(反 射 率 大 于 99%)和合适曲率半径 (100 mm)的平凹透镜,其品质因数高达 2.7×10⁷。声 测试结果为:频率响应范围为 20 Hz~20 kHz,声压灵 敏度为 958.9 mV/Pa,信噪比为 42.25 dB。后续可以 通过利用宽频带声源和将声敏感器件放入消声室中解 决频带窄的问题。

图 14 声压敏感机理实验。(a)FPR在A-A面上的剖面图;(b)FPR的机械结构图;(c)声检测结构的检测原理^[78] Fig. 14 Experiment on sound pressure sensitive mechanism. (a) Profile of FPE on plane A-A; (b) mechanical structure drawing of FPE; (c) detection principle of acoustic detection structure^[78]

2021年,中北大学的Chen等^[22]基于高品质因数 FPR的谐振效应,报道了一种纯光学无振膜光纤声传 感器,声传感器实物图如图15所示。该高品质因数 FPR由两个平行平面镜组成,镜面反射率超过99%, 品质因数高达10⁶。其制造方法为光胶工艺,是基于光 胶现象的一种光学加工工艺,工艺流程如图16所示。 可以看出,光胶工艺实现了高品质因数FPR的小批量

制造和高一致性。光纤准直器用来进行光纤与标准具的光耦合,目的是增加光耦合效率、降低损耗。所提出的微光纤声传感器实现了177.6 mV/Pa的高灵敏度。由于声波调制时 FPR 空气隙中的空气折射率发生了变化,得到了20 Hz~100 kHz的频率响应,平坦度为±2 dB,同时测得了100.51 dB的大动态范围。另外,采用调相谱检测技术作为该光纤声传感器的声信号解

图15 基于高品质因数FPR的微光纤声传感器。(a)实物图;(b)传感头尺寸图^[22]

Fig. 15 Micro-fiber-optic acoustic sensor based on high quality factor FPR. (a) Physical picture; (b) sensor head size diagram^[22]

图 16 FPR光胶工艺流程^[22] Fig. 16 Optical contact process of FPR^[22]

调技术,通过改变相位调制频率来影响高品质因数 FPR的同步解调曲线斜率和幅值,进而使单个光纤声 传感器可以分别实现2~530 mV/Pa和90 dB~107 dB 的大范围灵敏度和动态范围,提高了光纤声传感器的 应用灵活性和通用性^[70]。

高温环境下的声探测也十分具有挑战。2022年 Zhao 等^[80]通过将纯光学无振膜光纤声传感器放入退 火炉中完成了耐高温测试,测试系统如图17所示。 高温和声测试结果表明,该光纤声传感器可以在20~ 200℃的温度范围内实现高灵敏度的声探测,同时保 持较宽的频带。该器件无法承受更高的温度主要是 受到其光纤耦合方式的限制。为了进一步提升无振 膜光纤声传感器的耐高温特性,该课题组又提出了一 种基于石英玻璃直接键合的光纤F-P腔^[81],其"三明 治"结构的腔体由带凸台通孔石英玻璃片、通孔石英 玻璃垫片和石英玻璃片直接高温键合而成,再通过二 氧化碳激光熔融实现光纤与腔体的耦合得到光纤声 传感器,实物图如图18所示。基于MEMS工艺的该 器件具有高一致性、可大批量生产、能耐高温和无热 膨胀不匹配的优点,在高温声学测量领域有广阔的应 用前景。

图 17 纯光学无振膜光纤声传感器耐高温试验测试系统[80]

Fig. 17 High temperature resistance test system of all-optical membrane-free fiber-optic acoustic sensor^[80]

图 18 基于石英玻璃直接键合的光纤 F-P 腔。(a)批量化的"三明治"F-P 腔;(b)光纤声传感器实物图^[81] Fig. 18 Fiber F-P cavity based on silica glass direct bonding. (a) Bath "sandwich" F-P cavity; (b) image of fiber-optic acoustic sensor^[81]

4 MEMS光学声传感器的应用

4.1 光学超声生物医学成像

生物医学光声成像(PAI)作为一种结合了纯光学 成像的高对比度特性和纯超声成像的高穿透深度特性 的新型无损生物医学成像方法,在临床前研究中具有 广阔的应用前景。可作为水听器的MEMS光学声传 感器尤其适用于PAI这一新兴市场和热点领域。 2016年XARION激光声学公司以此为目的,在FPR 声敏感单元的空腔中填充水或指数匹配的液体,与传 统压电声传感器进行了对比基准测试,得到FPR型光 纤声传感器在信噪比方面超过了同类尺寸最好的医疗 超声压电传感器^[82]。对于体积小于0.1 mm³的传感器 来说,平均噪声等效输入压力在25 MHz带宽内小于 1 Pa。在当时,这个值对基于压电或光学检测方法的 液体耦合超声传感器来说是前所未有的。

在宽频率范围内达到高灵敏度是PAI应用的一个 关键特征,因为它直接影响图像质量和测量时间。 2017年Guggenheim等^[6]开发的利用强光学约束来提 供非常高灵敏度的平凹光学微谐振腔系列超声传感器 也被用于光声成像。平凹光学微谐振腔超声传感器的 高灵敏度和方向性的良好结合,为扩大这些成像方式 的穿透深度铺平了道路。此外,宽指向性和均匀的宽 带频率响应相结合,提供了比现有超声检测方法更好 的图像质量的前景。图19显示了在体内获得的小鼠 耳朵的光学分辨率光声显微镜(OR-PAM)图像,显示 了单个毛细血管水平的微血管。该光纤超声传感器位 于距离皮肤表面1.2 mm的位置,超声凝胶作为声学 耦合介质。高对比度和大视场显示了器件的高灵敏度 和近全向响应。最明显的是,在扫描区域的侧端观察, 传感器记录的光声波频率高达40 MHz,孔径角为75°。 该图像的实现不仅说明了传感器的良好声学性能,还 表明了其可在大范围内实现快速 OR-PAM 图像采集 的潜在途径。这是因为传感器的近全向响应允许它保 持静止,从而避免了通常使用常规OR-PAM中耗时的 机械扫描。

图 19 在体内获得的小鼠耳朵的光学分辨率光声显微镜图像^[6] Fig. 19 Optical resolution photoacoustic microscopy images of mouse ears obtained *in vivo*^[6]

4.2 地震物理模型超声成像

地震物理模型是按储藏地质结构等比例缩小的 模拟结构,可用于地震波传输及理论预测。地震物理 模型成像通过超声换能器扫描物理模型,采集携带模 型内部结构信息的声波信号,并根据反演算法重构模 型三维结构。成像分辨率及效率取决于超声发射及 采集系统。相比于传统的压电陶瓷(PZT)地震物理 模型成像系统,MEMS光学超声传感器可以呈现出 更高灵敏度和更高成像分辨率的地震物理模型成像。

西北大学乔学光等^[83]一直致力于可用于地震勘探 领域的光学超声传感器件相关研究。其中最具代表性 的是基于微结构光纤光栅的MEMS光学超声传感器。 他们建立了两种地震物理模型进行了超声波扫描成像 验证:一个用置于宽50 cm、厚5 cm 有机玻璃板上的半 径为5 cm 的半圆柱体模拟垄状地质结构,如图 20(a) 所示;另一个用两块方形有机玻璃板错位放置模拟断 面地质结构,如图 20(b)所示。两个地震物理模型在 测试时均放置于水中,超声波扫描成像过程为:传感器 探头和PZT 固定在水面上方的电动位移台上,其端面 均浸于水面,与水下模型相距5 cm。微结构光纤光栅 超声传感器和PZT 间隔6 cm,二者以每步1 mm的速率 沿着导轨滑动,对模型进行点对点横向扫描,实时记录

图 20 地震物理模型。(a) 垄状地质模拟结构; (b) 断面地质模拟结构^[83] Fig. 20 Photographs of physical models. (a) Ridge-like bulk; (b) misplaced rectangular bulk^[83]

探测的回波信号。根据超声波在有机玻璃板和水中传 输速度不同,利用 TOF 重建地震物理模型的图像,分 别如图 21(a)和图 21(b)所示。图像中可清晰地分辨模型的曲面和断面信息,与图 20所建实物模型相符合。

图 21 超声波成像。(a) 垄状地质模拟结构成像; (b) 断面地质模拟结构成像^[83] Fig. 21 Images of two physical models. (a) Ridge-like bulk; (b) misplaced rectangular bulk^[83]

4.3 光学超声无损检测

多年来,在不同的行业中,确定部件的机械完整性 而不造成损伤的方法一直是至关重要的。为了在生产 过程中进行全面的质量控制或在使用过程中进行缺陷 评估和监控,而牺牲试验对象是不合适的。这种检查 对海军、航空航天、汽车工业以及建筑业尤为重要,因 为在这些行业,材料失效可能危及人类安全。传统的 压电换能器通常设计成高共振,以达到所需的灵敏度, 但这会造成狭窄的带宽和共振引起的鸣响。因此, MEMS光学声传感器在无损检测等超声计量领域尤 其具有吸引力。超声传播受样品力学性能和结构的强 烈影响。缺陷,如裂纹或分层,导致散射、衍射和干涉, 从而改变发射到周围空气的超声响应,造成明显的"声 学指纹"。光纤声传感器能够检测这些在一个广泛频 率范围内的信号,从而进行光谱分析。2020年 XARION Laser Acoustics 公司讨论并演示了法布里-珀罗谐振腔型光纤声传感器在工业领域的应用^[84],如 Coda-wave 分析在高速生产过程中可以表征小陶瓷部 件的质量保证(线端测试),以及高分辨率空气耦合扫 描半导体组件的高速在线、非接触分层检测。对于尾 波,相关分析产生了一个良好的区分生产批次的小陶 瓷零件,可以清楚地确定有缺陷的批次。该方法可用 于直接在生产线上进行快速空气耦合测试。对于微电 子元件的c扫描成像,通过完全空气耦合测试装置可 以清楚地看到样品中存在的缺陷,与液体耦合扫描声 学显微镜相比,分辨率略有降低。结果表明,利用法布

里-珀罗谐振腔型光纤声传感器结合激光-超声激励可 以实现半导体器件的快速无损检测。

5 结束语

MEMS光学声传感器凭借其灵敏度高、频带范围 宽、抗电磁干扰能力强、可微型化和一致性高等优势受 到了科研人员的普遍关注和深入研究。本文对近年来 国内外 MEMS 光学声传感器在声探测领域的研究进 展和应用情况进行了总结,可为科研人员后续相关研 究提供一定的参考和依据。然而,大部分MEMS光学 声传感器的系统及应用中,只有 MEMS 声敏感元件本 身为集成器件,其余的组成部分均未实现集成,在成 本、尺寸和功耗上极大削弱了MEMS光学器件微型化 带来的优势。因此,系统层面的集成对MEMS光学声 传感器的实用化和普及化具有重要意义。目前光纤精 密拉丝、电子束蒸镀工艺、飞秒激光微加工、半导体光 刻工艺和晶圆键合等 MEMS 先进工艺技术已逐渐发 展成熟,MEMS光学声传感器可与硅基光电子集成技 术相结合,实现系统片上集成,在未来便携式声传感等 领域具有广泛的应用前景。

参考文献

- Brauns M, Lucking F, Fischer B, et al. Laser-excited acoustics for contact-free inspection of aerospace composites
 [J]. Materials Evaluation, 2021, 79(1): 28-37.
- [2] Haindl R, Deloria A J, Sturtzel C, et al. Functional

特邀综述

optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae[J]. Biomedical Optics Express, 2020, 11(4): 2137-2151.

- [3] Bell A G. Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34): 404-426.
- [4] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151-1158.
- [5] Hayber S E, Tabaru T E, Keser S, et al. A simple, high sensitive fiber optic microphone based on cellulose triacetate diaphragm[J]. Journal of Lightwave Technology, 2018, 36(23): 5650-5655.
- [6] Guggenheim J A, Li J, Allen T J, et al. Ultrasensitive Plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 2017, 11(11): 714-719.
- [7] Basiri-Esfahani S, Armin A, Forstner S, et al. Precision ultrasound sensing on a chip[J]. Nature Communications, 2019, 10: 132.
- [8] Gao R, Zhang M Y, Qi Z M. Miniature all-fibre microflown directional acoustic sensor based on crossed self-heated micro-Co²⁺-doped optical fibre Bragg gratings [J]. Applied Physics Letters, 2018, 113(13): 134102.
- [9] Gong Z F, Chen Y W, Gao T L, et al. Parylene-C diaphragm-based low-frequency photoacoustic sensor for space-limited trace gas detection[J]. Optics and Lasers in Engineering, 2020, 134: 106288.
- [10] Fu X, Lu P, Zhang J, et al. Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing[J]. Optics Express, 2019, 27(17): 24300-24310.
- [11] Westerveld W J, Mahmud-Ul-Hasan M, Shnaiderman R, et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics[J]. Nature Photonics, 2021, 15(5): 341-345.
- [12] Sarkar B, Mishra D K, Koley C, et al. Intensitymodulated fiber Bragg grating sensor for detection of partial discharges inside high-voltage apparatus[J]. IEEE Sensors Journal, 2016, 16(22): 7950-7957.
- [13] Zhang T Z, Pang F F, Liu H H, et al. A fiber-optic sensor for acoustic emission detection in a high voltage cable system[J]. Sensors, 2016, 16(12): 2026.
- [14] Jia J S, Jiang Y, Zhang L C, et al. Symbiosis-Michelson interferometer-based detection scheme for the measurement of dynamic signals[J]. IEEE Sensors Journal, 2019, 19(18): 7988-7992.
- [15] Huang S C, Lin W W, Tsai M T, et al. Fiber optic inline distributed sensor for detection and localization of the pipeline leaks[J]. Sensors and Actuators A: Physical, 2007, 135(2): 570-579.
- [16] Hajireza P, Krause K, Brett M, et al. Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound[J]. Optics Express, 2013, 21(5): 6391-6400.
- [17] Niu S L, Hu Y M, Hu Z L, et al. Fiber Fabry-Pérot hydrophone based on push - pull structure and differential detection[J]. IEEE Photonics Technology Letters, 2011,

23(20): 1499-1501.

- [18] Horiuchi N. Fibre-optic pickup[J]. Nature Photonics, 2012, 6(2): 80.
- [19] Huang S W, Chen S L, Ling T, et al. Low-noise wideband ultrasound detection using polymer microring resonators[J]. Applied Physics Letters, 2008, 92(19): 193509.
- [20] Maxwell A, Huang S W, Ling T, et al. Polymer microring resonators for high-frequency ultrasound detection and imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 191-197.
- [21] 陈晨.半掩埋光波导谐振腔的设计及其声传感效应验证
 [D].太原:中北大学, 2021: 21-23.
 Chen C. Design of a semi-buried optical waveguide resonator and verification of its acoustic sensing effect[D].
 Taiyuan: North University of China, 2021: 21-23.
- [22] Chen J M, Xue C Y, Zheng Y Q, et al. Micro-fiberoptic acoustic sensor based on high-Q resonance effect using Fabry-Pérot etalon[J]. Optics Express, 2021, 29 (11): 16447-16454.
- [23] Cao Y C, Jin W, Ho L H, et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers [J]. Optics Letters, 2012, 37(2): 214-216.
- [24] Ni W J, Lu P, Fu X, et al. Highly sensitive optical fiber curvature and acoustic sensor based on thin core ultralong period fiber grating[J]. IEEE Photonics Journal, 2017, 9 (2): 7100909.
- [25] Gao R, Ye J S, Xin X J. Directional acoustic signal measurement based on the asymmetrical temperature distribution of the parallel microfiber array[J]. Optics Express, 2019, 27(23): 34113-34125.
- [26] Yin H H, Shao Z H, Chen F Y, et al. Highly sensitive ultrasonic sensor based on polymer Bragg grating and its application for 3D imaging of seismic physical model[J]. Journal of Lightwave Technology, 2022, 40(15): 5294-5299.
- [27] Zhang X L, Meng Z, Hu Z L. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector[J]. Chinese Optics Letters, 2011, 9 (11): 110601.
- [28] Yang F, Jin W, Ho H L, et al. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers[J]. Optics Express, 2013, 21(13): 15514-15521.
- [29] Liu L, Lu P, Liao H, et al. Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm[J]. IEEE Sensors Journal, 2016, 16(9): 3054-3058.
- [30] Fan P J, Yan W, Lu P, et al. High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm[J]. Optics Express, 2020, 28 (17): 25238-25249.
- [31] Ma J, Yu Y Q, Jin W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias[J]. Optics Express, 2015, 23(22): 29268-29278.
- [32] Fu X, Lu P, Ni W J, et al. Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave

特邀综述

and lateral pressure simultaneously[J]. IEEE Photonics Journal, 2016, 8(6): 6805713.

- [33] Pawar D, Rao C N, Choubey R K, et al. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections[J]. Applied Physics Letters, 2016, 108(4): 041912.
- [34] Dass S, Jha R. Underwater low acoustic frequency detection based on in-line Mach-Zehnder interferometer[J]. Journal of the Optical Society of America B, 2021, 38(2): 570-575.
- [35] Alcoz J J, Lee C E, Taylor H F. Embedded fiber-optic Fabry-Perot ultrasound sensor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37(4): 302-306.
- [36] Wang X X, Jin L, Li J, et al. Microfiber interferometric acoustic transducers[J]. Optics Express, 2014, 22(7): 8126-8135.
- [37] Wang X X, Jiang Y H, Li Z Y, et al. Sensitivity characteristics of microfiber Fabry-Perot interferometric photoacoustic sensors[J]. Journal of Lightwave Technology, 2019, 37(17): 4229-4235.
- [38] Shao Z H, Rong Q Z, Chen F Y, et al. High-spatialresolution ultrasonic sensor using a micro suspended-core fiber[J]. Optics Express, 2018, 26(8): 10820-10832.
- [39] Shao Z H, Zhou K Y, Yin H H, et al. Advanced suspended-core fiber sensor for seismic physical modeling [J]. Optics Express, 2022, 30(10): 16384-16395.
- [40] Fan H B, Zhang L, Gao S, et al. Ultrasound sensing based on an in-fiber dual-cavity Fabry-Perot interferometer [J]. Optics Letters, 2019, 44(15): 3606-3609.
- [41] Qu Z Y, Lu P, Li Y J, et al. Low-frequency acoustic Fabry-Pérot fiber sensor based on a micromachined silicon nitride membrane[J]. Chinese Optics Letters, 2020, 18(10): 101201.
- [42] Wang D H, Jia P G, Wang S J, et al. Tip-sensitive allsilica fiber-optic Fabry-Perot ultrasonic hydrophone for charactering high intensity focused ultrasound fields[J]. Applied Physics Letters, 2013, 103(4): 044102.
- [43] Akkaya O C, Akkaya O, Digonnet M J F, et al. Modeling and demonstration of thermally stable highsensitivity reproducible acoustic sensors[J]. Journal of Microelectromechanical Systems, 2012, 21(6): 1347-1356.
- [44] Liu B, Lin J, Wang J, et al. MEMS-based highsensitivity Fabry-Perot acoustic sensor with a 45° angled fiber[J]. IEEE Photonics Technology Letters, 2016, 28 (5): 581-584.
- [45] Wu G M, Xiong L S, Dong Z F, et al. Development of highly sensitive fiber-optic acoustic sensor and its preliminary application for sound source localization[J]. Journal of Applied Physics, 2021, 129(16): 164504.
- [46] Dass S, Kachhap S, Jha R. Hearing the sounds of aquatic life using optical fiber microtip-based hydrophone[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4015-4020.
- [47] Beard P C, Mills T N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer[J]. Applied Optics, 1996, 35(4):

663-675.

- [48] Beard P C, Hurrell A M, Mills T N. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 256-264.
- [49] Morris P, Hurrell A, Shaw A, et al. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America, 2009, 125(6): 3611-3622.
- [50] Kilic O, Digonnet M, Kino G, et al. External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror[J]. Measurement Science and Technology, 2007, 18(10): 3049-3054.
- [51] Jo W, Akkaya O C, Solgaard O, et al. Miniature fiber acoustic sensors using a photonic-crystal membrane[J]. Optical Fiber Technology, 2013, 19(6): 785-792.
- [52] Lorenzo S, Wong Y P, Solgaard O. Optical fiber photonic crystal hydrophone for Cellular acoustic sensing[J]. IEEE Access, 2021, 9: 42305-42313.
- [53] Ma J, Xuan H F, Ho H L, et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm
 [J]. IEEE Photonics Technology Letters, 2013, 25(10): 932-935.
- [54] Li C, Gao X Y, Guo T T, et al. Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nanothick graphene diaphragm[J]. Measurement Science and Technology, 2015, 26(8): 085101.
- [55] Ni W J, Lu P, Fu X, et al. Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing[J]. Optics Express, 2018, 26(16): 20758-20767.
- [56] Monteiro C S, Raposo M, Ribeiro P A, et al. Acoustic optical fiber sensor based on graphene oxide membrane [J]. Sensors, 2021, 21(7): 2336.
- [57] Wang S C, Chen W G. A large-area and nanoscale graphene oxide diaphragm-based extrinsic fiber-optic Fabry-Perot acoustic sensor applied for partial discharge detection in air[J]. Nanomaterials, 2020, 10(11): 2312.
- [58] Wang J X, Zhao J J, Wang J Y, et al. A multi-frequency fiber optic acoustic sensor based on graphene-oxide Fabry-Perot microcavity[J]. Optical Fiber Technology, 2021, 65: 102607.
- [59] Guo F W, Fink T, Han M, et al. High-sensitivity, highfrequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm[J]. Optics Letters, 2012, 37(9): 1505-1507.
- [60] Liu B, Lin J, Liu H, et al. Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm[J]. Microelectronic Engineering, 2016, 166: 50-54.
- [61] Liu B, Zhou H, Liu L, et al. An optical fiber Fabry-Perot microphone based on corrugated silver diaphragm[J]. IEEE Transactions on Instrumentation and Measurement,

特邀综述

2018, 67(8): 1994-2000.

- [62] Qi X G, Wang S, Jiang J F, et al. Flywheel-like diaphragm-based fiber-optic Fabry-Perot frequency tailored acoustic sensor[J]. Journal of Physics D: Applied Physics, 2020, 53(41): 415102.
- [63] Xiang Z W, Dai W Y, Rao W Y, et al. A gold diaphragm-based Fabry-Perot interferometer with a fiberoptic collimator for acoustic sensing[J]. IEEE Sensors Journal, 2021, 21(16): 17882-17888.
- [64] Liu X Y, Jiang J F, Wang S, et al. A compact fiber optic Fabry-Perot sensor for simultaneous measurement of acoustic and temperature[J]. IEEE Photonics Journal, 2019, 11(6): 7104710.
- [65] Ren D P, Liu X, Zhang M Y, et al. Low-frequency Bidirectional microphone based on a combination of bionic MEMS diaphragm and fiber acousto-optic transducer[J]. IEEE Sensors Journal, 2021, 21(13): 14655-14665.
- [66] Liu J, Yuan L, Lei J C, et al. Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser [J]. Optics Letters, 2017, 42(13): 2459-2462.
- [67] Yuan L, Zhang Y N, Liu J, et al. Ultrafast laser ablation of silica optical fibers for fabrication of diaphragm/ cantilever-based acoustic sensors[J]. Journal of Laser Applications, 2017, 29(2): 022206.
- [68] Moradi H, Parvin P, Ojaghloo A, et al. Ultrasensitive fiber optic Fabry Pérot acoustic sensor using phase detection[J]. Measurement, 2021, 172: 108953.
- [69] O'Donnell M, Ashkenazi S, Guo L J, et al. Highfrequency ultrasound transduction using polymer microring resonators[C]//2006 IEEE Ultrasonics Symposium, October 2-6, 2006, Vancouver, BC, Canada. New York: IEEE Press, 2006: 1056-1059.
- [70] Zhang C, Ling T, Chen S L, et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 2014, 1 (11): 1093-1098.
- [71] Chen H, Shao Z H, Hao Y X, et al. A high-frequency hydrophone using an optical fiber microknot resonator[J]. Optics Communications, 2019, 446: 77-83.
- [72] Chistiakova M V, Armani A M. Photoelastic ultrasound detection using ultra-high-Q silica optical resonators[J].
 Optics Express, 2014, 22(23): 28169-28179.
- [73] Han C Y, Zhao C Y, Ding H, et al. Spherical microcavity-based membrane-free Fizeau interferometric acoustic sensor[J]. Optics Letters, 2019, 44(15): 3677-

3680.

- [74] Sun J L, Meng J W, Tang S J, et al. An encapsulated optical microsphere sensor for ultrasound detection and photoacoustic imaging[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(2): 224211.
- [75] Han C Y, Ding H, Li B J, et al. A miniature fiber-optic microphone based on Plano-concave micro-interferometer
 [J]. Review of Scientific Instruments, 2022, 93(4): 045001.
- [76] Fischer B, Fruthwirth R, Wintner E. Optical pressure transducer without membrane: an analysis of sensor noise sources[J]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2011, 2011(5): 2840-2850.
- [77] Fischer B. Optical microphone hears ultrasound[J]. Nature Photonics, 2016, 10(6): 356-358.
- [78] Wu L Y, Zheng Y Q, Xue C Y, et al. An optical acoustic detection system based on Fabry Pérot etalon stability structure[J]. Micromachines, 2021, 12(12): 1564.
- [79] Chen J M, Xue C Y, Zheng Y Q, et al. Fiber-optic acoustic sensor for flexibility and universality applications adopting phase modulation spectroscopy[J]. IEEE Sensors Journal, 2021, 21(19): 21631-21637.
- [80] Zhao X Y, Bai J D, Zheng Y Q, et al. Research on hightemperature characteristics of a miniature Fabry-Pérot cavity acoustic sensor[J]. Optics Express, 2022, 30(15): 26609-26619.
- [81] Hua X Q, Zheng Y Q, Chen J M, et al. Compact fiberoptic Fabry-Perot cavity based on sandwich structure adopting direct bonding of quartz glass[J]. Applied Optics, 2022, 61(10): 2818-2824.
- [82] Nguendon Kenhagho H, Canbaz F, Guzman R, et al. Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor[J]. Sensors and Actuators A: Physical, 2021, 317: 112394.
- [83] 乔学光,邵志华,包维佳,等.光纤超声传感器及应用研究进展[J].物理学报,2017,66(7):074205.
 Qiao X G, Shao Z H, Bao W J, et al. Fiber-optic ultrasonic sensors and applications[J]. Acta Physica Sinica, 2017, 66(7):074205.
- [84] Kaniak G, Rohringer W, Brauns M, et al. Enhanced non-contact ultrasonic testing using an air-coupled optical microphone[C]//2020 IEEE SENSORS, October 25-28, 2020, Rotterdam, Netherlands. New York: IEEE Press, 2020.